• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Friedrich-Alexander-Universität Lehrstuhl für Digital Industrial Service Systems WiSo
  • FAUZur zentralen FAU Website
  1. Friedrich-Alexander-Universität
  2. Fachbereich Wirtschafts- und Sozialwissenschaften
  • English
  • FB WIWI
  • WIN
  • Kontakt und Anfahrt
  1. Friedrich-Alexander-Universität
  2. Fachbereich Wirtschafts- und Sozialwissenschaften
Friedrich-Alexander-Universität Lehrstuhl für Digital Industrial Service Systems WiSo
Menu Menu schließen
  • Home
  • Lehre
  • Forschung
  • Praxis
  • Team
  • Kontakt und Anfahrt
  • Stellenangebote
  1. Startseite
  2. Team
  3. Dr. Sven Weinzierl

Dr. Sven Weinzierl

Bereichsnavigation: Team
  • Prof. Dr. Martin Matzner
  • Dr. Sven Weinzierl
  • Charlotte Bahr
  • Pepe Bellin
  • Sebastian Dunzer
  • Mohammed Al Ghadban
  • Annina Ließmann
  • Willi Tang
  • Sandra Zilker

Dr. Sven Weinzierl

Dr. Sven Weinzierl

Fachbereich Wirtschafts- und Sozialwissenschaften
Lehrstuhl für Digital Industrial Service Systems

Raum: Raum 33.1.19
Fürther Straße 248
90429 Nürnberg
  • Telefon: +499115302-96486
  • E-Mail: sven.weinzierl@fau.de

Forschungsgebiete

  • Artificial Intelligence for Business Process Management
  • Artificial Intelligence for Service Management
  • Artificial Intelligence for Organisational Management

Lehre

  • Seminar Digitale Dienstleistungssysteme an der WiSo
  • Forschungsmethodisches Seminar
  • Process Analytics (Vorlesung)

CV

Berufserfahrung

Seit 08/2018 Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
Wissenschaftlicher Mitarbeiter | Chair of Digital Industrial Service Systems
09/2017 – 12/2017 DATEV eG
Werkstudent | Artificial Intelligence / Machine Learning
05/2017 – 07/2017 MHP Management- und IT-Beratung GmbH
Werkstudent | Predictive Analytics
03/2015 – 07/2015 MHP Management- und IT-Beratung GmbH
Prakitkant | Business Intelligence
01/2014 – 10/2014 DATEV eG
Werkstudent | Software Engineering
08/2011 – 12/2013 Ribe Holding GmbH & Co. KG
Werkstudent | Software Development in Systems Integration

Ausbildung

08/2018 – 04/2022 Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
Doktorand | Information Systems
04/2016 – 06/2018 Otto-Friedrich-Universität Bamberg
Master of Science | Information Systems
10/2012 – 03/2016 Hochschule Ansbach
Bachelor of Arts | Information Systems
09/2008 – 07/2011 Ribe Holding GmbH & Co. KG
IHK Professional Training | IT Merchant

Publikationen

Beiträge

2023

  • Oberdorf F., Schaschek M., Weinzierl S., Stein N., Matzner M., Flath C.:
    Predictive end-to-end enterprise process network monitoring
    In: Business & Information Systems Engineering (2023)
    ISSN: 1867-0202
    DOI: 10.1007/s12599-022-00778-4
    BibTeX: Download

2022

  • Weinzierl S., Wolf V., Pauli T., Beverungen D., Matzner M.:
    Detecting temporal workarounds in business processes – A deep-learning-based method for analysing event log data
    In: Journal of Business Analytics 5 (2022), S. 76-100
    ISSN: 2573-234X
    DOI: 10.1080/2573234X.2021.1978337
    URL: https://www.tandfonline.com/doi/full/10.1080/2573234X.2021.1978337
    BibTeX: Download

2021

  • Stierle M., Weinzierl S., Harl M., Matzner M.:
    A technique for determining relevance scores of process activities using graph-based neural networks
    In: Decision Support Systems 144 (2021), Art.Nr.: 113511
    ISSN: 0167-9236
    DOI: 10.1016/j.dss.2021.113511
    URL: http://www.sciencedirect.com/science/article/pii/S016792362100021X
    BibTeX: Download

2020

  • Brunk J., Stottmeister J., Weinzierl S., Matzner M., Becker J.:
    Exploring the effect of context information on deep learning business process predictions
    In: Journal of Decision Systems (2020), S. 1-16
    ISSN: 1246-0125
    DOI: 10.1080/12460125.2020.1790183
    BibTeX: Download
  • Harl M., Weinzierl S., Stierle M., Matzner M.:
    Explainable predictive business process monitoring using gated graph neural networks
    In: Journal of Decision Systems (2020), S. 1-16
    ISSN: 1246-0125
    DOI: 10.1080/12460125.2020.1780780
    BibTeX: Download

Konferenzen

2023

  • Drodt C., Weinzierl S., Matzner M., Delfmann P.:
    Predictive Recommining: Learning relations between event log characteristics and machine learning approaches for supporting predictive process monitoring
    International Conference on Advanced Information Systems Engineering (Zaragoza, 12. Juni 2023 - 16. Juni 2023)
    In: Proceedings of the 35th International Conference on Advanced Information Systems Engineering Forum 2023
    BibTeX: Download
  • Zilker S., Weinzierl S., Zschech P., Kraus M., Matzner M.:
    Best of both worlds: Combining predictive power with interpretable and explainable results for patient pathway prediction
    European Conference on Information Systems (Kristiansand, 13. Juni 2023 - 16. Juni 2023)
    In: Proceedings of the 31st European Conference on Information Systems 2023
    BibTeX: Download

2022

  • Cabrera Pérez L., Weinzierl S., Zilker S., Matzner M.:
    Text-aware predictive process monitoring with contextualized word embeddings
    International Conference on Business Process Management (Münster)
    In: Proceedings of the BPM 2022 International Workshops 2022
    DOI: 10.1007/978-3-031-25383-6_22
    BibTeX: Download
  • Weinzierl S., Bartelheimer C., Zilker S., Beverungen D., Matzner M.:
    A method for predicting workarounds in business processes
    Pacific Asia Conference on Information Systems (Taipei-Sydney, 5. Juli 2022 - 9. Juli 2022)
    In: Proceedings of the 25th Pacific Asia Conference on Information Systems 2022
    BibTeX: Download
  • Zschech P., Weinzierl S., Hambauer N., Zilker S., Kraus M.:
    GAM(e) changer or not? An evaluation of interpretable machine learning models based on additive model constraints
    European Conference on Information Systems (Timisoara, 5. Juli 2022 - 9. Juli 2022)
    In: Proceedings of the 30th European Conference on Information Systems 2022
    BibTeX: Download

2021

  • Drodt C., Weinzierl S., Matzner M., Delfmann P.:
    The recomminder: A decision support tool for predictive business process monitoring
    International Conference on Business Process Management (Rom)
    In: Proceedings of the BPM 2021 Demonstration & Resources Track, Best BPM Dissertation Award, and Doctoral Consortium 2021
    BibTeX: Download
  • Stierle M., Brunk J., Weinzierl S., Zilker S., Matzner M., Becker J.:
    Bringing light into the darkness - A systematic literature review on explainable predictive business process monitoring techniques
    European Conference on Information Systems (Marrakesch)
    In: Proceedings of the 29th European Conference on Information Systems 2021
    BibTeX: Download
  • Weinzierl S.:
    Exploring gated graph sequence neural networks for predicting next process activities
    International Conference on Business Process Management (Rom)
    In: Proceedings of the BPM 2021 International Workshops. 2021
    BibTeX: Download
  • Weinzierl S., Dunzer S., Tenschert J., Zilker S., Matzner M.:
    Predictive business process deviation monitoring
    European Conference on Information Systems (Marrakesch)
    In: Proceedings of the 29th European Conference on Information Systems 2021
    BibTeX: Download

2020

  • Marx E., Stierle M., Weinzierl S., Matzner M.:
    Closing the gap between smart manufacturing applications and data management
    International Conference on Wirtschaftsinformatik (WI) (Potsdam, 9. März 2020 - 11. März 2020)
    In: Proceedings of the 15th International Conference on Wirtschaftsinformatik (WI) 2020
    DOI: 10.30844/wi_2020_u1-marx
    URL: https://library.gito.de/2021/07/wi2020-community-tracks-9/
    BibTeX: Download
  • Nguyen A., Chatterjee S., Weinzierl S., Schwinn L., Matzner M., Eskofier B.:
    Time matters: Time-aware LSTMs for predictive business process monitoring
    International Conference on Process Mining (Padua, 4. Oktober 2020 - 9. Oktober 2020)
    In: Proceedings of the ICPM 2020 International Workshops 2020
    BibTeX: Download
  • Weinzierl S., Dunzer S., Zilker S., Matzner M.:
    Prescriptive business process monitoring for recommending next best actions
    International Conference on Business Process Management (Sevilla, 13. September 2020 - 18. September 2020)
    In: Proceedings of the 18th International Conference on Business Process Management Forum 2020
    DOI: 10.1007/978-3-030-58638-6_12
    URL: https://link.springer.com/content/pdf/10.1007/978-3-030-58638-6_12.pdf
    BibTeX: Download
  • Weinzierl S., Stierle M., Zilker S., Matzner M.:
    A next click recommender system for web-based service analytics with context-aware LSTMs
    Hawaii International Conference on System Sciences (Grand Wailea, Maui, Hawaii, 7. Januar 2020 - 10. Januar 2020)
    In: Proceedings of the 53rd Hawaii International Conference on System Sciences 2020
    DOI: 10.24251/HICSS.2020.190
    URL: http://hdl.handle.net/10125/63929
    BibTeX: Download
  • Weinzierl S., Wolf V., Pauli T., Beverungen D., Matzner M.:
    Detecting workarounds in business processes — A deep learning method for analyzing event logs
    European Conference on Information Systems (Marrakesch, 15. Juni 2020 - 17. Juni 2020)
    In: Proceedings of the 28th European Conference on Information Systems 2020
    URL: https://www.researchgate.net/publication/341180737_DETECTING_WORKAROUNDS_IN_BUSINESS_PROCESSES_-_A_DEEP_LEARNING_METHOD_FOR_ANALYZING_EVENT_LOGS
    BibTeX: Download
  • Weinzierl S., Zilker S., Brunk J., Revoredo K., Matzner M., Becker J.:
    XNAP: Making LSTM-based next activity predictions explainable by using LRP
    International Conference on Business Process Management (Sevilla, 13. September 2020 - 18. September 2020)
    In: Proceedings of the BPM 2020 International Workshops. 2020
    DOI: 10.1007/978-3-030-66498-5_10
    BibTeX: Download
  • Weinzierl S., Zilker S., Stierle M., Park G., Matzner M.:
    From predictive to prescriptive process monitoring: Recommending the next best actions instead of calculating the next most likely events
    Internationale Tagung Wirtschaftsinformatik (Potsdam, 8. März 2020 - 11. März 2020)
    In: Proceedings of the 15th International Conference on Wirtschaftsinformatik 2020
    DOI: 10.30844/wi_2020_c12-weinzierl
    URL: https://library.gito.de/open-access-pdf/C12_Prescriptive_process_monitoring_-_a_technique_for_determining_next_best_actions_resub.pdf
    BibTeX: Download

2019

  • Weinzierl S., Revoredo K., Matzner M.:
    Predictive business process monitoring with context information from documents
    European Conference on Information Systems (Stockholm, 8. Juni 2019 - 14. Juni 2019)
    In: Proceedings of the 27th European Conference on Information Systems 2019
    URL: https://www.researchgate.net/publication/333245929_PREDICTIVE_BUSINESS_PROCESS_MONITORING_WITH_CONTEXT_INFORMATION_FROM_DOCUMENTS
    BibTeX: Download

Berichte

Es wurden leider keine Publikationen gefunden.

Friedrich-Alexander-Universität Erlangen-Nürnberg
Lehrstuhl für Digital Industrial Service Systems

Fürther Str. 248
90429 Nürnberg
  • Anmelden
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Facebook
  • Twitter
  • Instagram
Nach oben